
MODULE-2

5. Predicate Logic

Introduction
Predicate logic is used to represent Knowledge. Predicate logic will be met in Knowledge
Representation Schemes and reasoning methods. There are other ways but this form is popular.

Propositional Logic
It is simple to deal with and decision procedure for it exists. We can represent real-world facts as
logical propositions written as well-formed formulas.
To explore the use of predicate logic as a way of representing knowledge by looking at a specific
example.

The above two statements becomes totally separate assertion, we would not be able to draw any
conclusions about similarities between Socrates and Plato.

These representations reflect the structure of the knowledge itself. These use predicates applied to
arguments.

It fails to capture the relationship between any individual being a man and that individual being a
mortal.

We need variables and quantification unless we are willing to write separate statements.

Predicate:
A Predicate is a truth assignment given for a particular statement which is either true or false. To solve
common sense problems by computer system, we use predicate logic.

Logic Symbols used in predicate logic

MODULE-2

Predicate Logic
• Terms represent specific objects in the world and can be constants, variables or functions.
• Predicate Symbols refer to a particular relation among objects.
• Sentences represent facts, and are made of terms, quantifiers and predicate symbols.
• Functions allow us to refer to objects indirectly (via some relationship).
• Quantifiers and variables allow us to refer to a collection of objects without explicitly naming

each object.
• Some Examples

o Predicates: Brother, Sister, Mother , Father
o Objects: Bill, Hillary, Chelsea, Roger
o Facts expressed as atomic sentences a.k.a.
literals:

o Father(Bill,Chelsea)
o Mother(Hillary,Chelsea)
o Brother(Bill,Roger)
o Father(Bill,Chelsea)

Variables and Universal Quantification
Universal Quantification allows us to make a statement about a collection of objects:

Variables and Existential Quantification
Existential Quantification allows us to state that an object does exist (without naming it):

Nested Quantification

MODULE-2

Functions
• Functions are terms - they refer to a specific object.
• We can use functions to symbolically refer to objects without naming them.
• Examples:

fatherof(x) age(x) times(x,y) succ(x)
• Using functions

If we use logical statements as a way of representing knowledge, then we have available a good
way of reasoning with that knowledge.
Representing facts with Predicate Logic

1) Marcus was a man man(Markus)
2) Marcus was a Pompeian pompeian(Markus)

3) All Pompeians were Romans
4) Caeser was a ruler. ruler(caeser)
5) All romans were either loyal to caeser or hated him.

6) Everyone loyal to someone.
7) People only try to assassinate rulers they are not loyal to.

8) Marcus try to assassinate Ceaser

Q. Prove that Marcus is not loyal to Ceaser by backward substitution

MODULE-2

Representing Instance and Isa Relationships
Two attributes isa and instance play an important role in many aspects of knowledge representation.
The reason for this is that they support property inheritance.

isa - used to show class inclusion, e.g. isa (mega_star,rich). instance -
used to show class membership, e.g. instance(prince,mega_star).

In the figure above,
 The first five sentences of the represent the pure predicate logic. In these

representations, class membership is represented with unary predicates (such as
Roman), each of which corresponds to a class. Asserting that P(x) is true is equivalent to
asserting that x is an instance of P.

 The second part of the figure contains representations that use the instance predicate
explicitly. The predicate instance is a binary one, whose first argument is an object and
whose second argument is a class to which the object belongs. But these
representations do not use an explicit isa predicate.

 The third part contains representations that use both the instance and isa predicates
explicitly. The use of the isa predicate simplifies the representation of sentence 3, but it
requires that one additional axiom be provided. This additional axiom describes how an
instance relation and an isa relation can be combined to derive a new instance relation.

MODULE-2

Computable Functions and Predicates
This is fine if the number of facts is not very large or if the facts themselves are sufficiently
unstructured that there is little alternative. But suppose we want to express simple facts, such as
the following greater-than and less-than relationships:
gt(1,0) It(0,1)
gt(2,1) It(1,2)
gt(3,2) It(2,3)
Clearly we do not want to have to write out the representation of each of these facts individually.
For one thing, there are infinitely many of them. But even if we only consider the finite number of
them that can be represented, say, using a single machine word per number, it would be
extremely inefficient to store explicitly a large set of statements when we could, instead, so easily
compute each one as we need it. Thus it becomes useful to augment our representation by
these computable predicates.

MODULE-2

Resolution:
A procedure to prove a statement, Resolution attempts to show that Negation of Statement gives
Contradiction with known statements. It simplifies proof procedure by first converting the
statements into canonical form. Simple iterative process; at each step, 2 clauses called the
parent clauses are compared, yielding a new clause that has been inferred from them.

Resolution refutation:
• Convert all sentences to CNF (conjunctive normal

form)
• Negate the desired conclusion (converted to CNF)

Apply resolution rule until either
– Derive false (a contradiction)
– Can’t apply any more

Resolution refutation is sound and complete
• If we derive a contradiction, then the conclusion follows from the axioms
• If we can’t apply any more, then the conclusion cannot be proved from the axioms.

Sometimes from the collection of the statements we have, we want to know the answer of this
question - "Is it possible to prove some other statements from what we actually know?" In order
to prove this we need to make some inferences and those other statements can be shown true
using Refutation proof method i.e. proof by contradiction using Resolution. So for the asked goal
we will negate the goal and will add it to the given statements to prove the contradiction.

So resolution refutation for propositional logic is a complete proof procedure. So if the thing that
you're trying to prove is, in fact, entailed by the things that you've assumed, then you can prove it
using resolution refutation.

Clauses:
 Resolution can be applied to certain class of wff called clauses.
 A clause is defined as a wff consisting of disjunction of literals.

Conjunctive Normal Form or Clause Normal Form:
Clause form is an approach to Boolean logic that expresses formulas as conjunctions of clauses
with an AND or OR. Each clause connected by a conjunction or AND must be wither a literal or
contain a disjunction or OR operator. In clause form, a statement is a series of ORs connected
by ANDs.

A statement is in conjunctive normal form if it is a conjunction (sequence of ANDs) consisting of
one or more conjuncts, each of which is a disjunction (OR) of one or more literals (i.e., statement
letters and negations of statement letters).

All of the following formulas in the variables A, B, C, D, and E are in conjunctive normal form:

MODULE-2

Conversion to Clause Form:

 Clause Form:

Algorithm:

1. Eliminate implies relation () Using (Ex: → =>)

2. Reduce the scope of each to a single term

3. Standardize variables so that each quantifier binds a unique variable.

4. Move all quantifiers to the left of the formulas without changing their relative order.

5. Eliminate existential quantifiers. We can eliminate the quantifier by substituting for the variable

a reference to a function that produces the desired value. y: President(y) => President(S1)

In general the function must have the same number of arguments as the number of universal
quantifiers in the current scope.
Skolemize to remove existential quantifiers. This step replaces existentially quantified
variables by Skolem functions. For example, convert (x)P(x) to P(c) where c is a brand

MODULE-2

new constant symbol that is not used in any other sentence (c is called a Skolem
constant). More generally, if the existential quantifier is within the scope of a universal
quantified variable, then introduce a Skolem function that depends on the universally
quantified variable. For example, " x y P(x,y) is converted to " x P(x, f(x)). f is called a
Skolem function, and must be a brand new function name that does not occur in any
other part of the logic sentence.

6. Drop the prefix. At this point, all remaining variables are universally quantified.

7. Convert the matrix into a conjunction of disjunctions.

8. Create a separate clause corresponding to each conjunct in order for a well formed formula to

be true, all the clauses that are generated from it must be true.
9. Standardize apart the variables in set of clauses generated in step 8. Rename the variables.

So that no two clauses make reference to same variable.

Convert the statements to clause form
1. man(marcus)
2. pompeian(marcus)
3. pompeian(x) roman(x)
4. ruler(caeser)
5. x: roman(x) loyalto(x,caeser) V hate(x,caeser)

MODULE-2

The resultant clause form is

Basis of Resolution:
Resolution process is applied to pair of parent clauses to produce a derived clause. Resolution
procedure operates by taking 2 clauses that each contain the same literal. The literal must occur
in the positive form in one clause and negative form in the other. The resolvent is obtained by
combining all of the literals of two parent clauses except ones that cancel. If the clause that is
produced in an empty clause, then a contradiction has been found.
Eg: winter and winter will produce the empty clause.

If a contradiction exists, then eventually it will be found. Of course, if no contradiction exists, it is
possible that the procedure will never terminate, although as we will see, there are often ways of
detecting that no contradiction exists.

Resolution in Propositional Logic:

Example: Consider the following axioms
P (P Q) → R (S T) → Q T

Convert them into clause form and prove that R is true

MODULE-2

Unification Algorithm
• In propositional logic it is easy to determine that two literals cannot both be true at the same

time.
• Simply look for L and ~L . In predicate logic, this matching process is more complicated, since

bindings of variables must be considered.
• In order to determine contradictions we need a matching procedure that compares two literals

and discovers whether there exist a set of substitutions that makes them identical.
• There is a recursive procedure that does this matching. It is called Unification algorithm.
• The process of finding a substitution for predicate parameters is called unification.
• We need to know:

– that 2 literals can be matched.
– the substitution is that makes the literals identical.

• There is a simple algorithm called the unification algorithm that does this.

The Unification Algorithm
1. Initial predicate symbols must match.
2. For each pair of predicate arguments:

– Different constants cannot match.
– A variable may be replaced by a constant.
– A variable may be replaced by another variable.
– A variable may be replaced by a function as long as the function does not contain an

instance of the variable.

• When attempting to match 2 literals, all substitutions must be made to the entire literal.

MODULE-2

• There may be many substitutions that unify 2 literals; the most general unifier is always
desired.

Unification Example:

The object of the Unification procedure is to discover at least one substitution that causes two
literals to match. Usually, if there is one such substitution there are many

In
Unification algorithm each literal is represented as a list, where first element is the name of a
predicate and the remaining elements are arguments. The argument may be a single element
(atom) or may be another list.
The unification algorithm recursively matches pairs of elements, one pair at a time. The matching
rules are:

• Different constants, functions or predicates cannot match, whereas identical ones can.
• A variable can match another variable, any constant or a function or predicate

expression, subject to the condition that the function or [predicate expression must not
contain any instance of the variable being matched (otherwise it will lead to infinite

recursion).

MODULE-2

• The substitution must be consistent. Substituting y for x now and then z for x later is

Example:
Suppose we want to unify p(X,Y,Y) with p(a,Z,b).
Initially E is {p(X,Y,Y)=p(a,Z,b)}.
The first time through the while loop, E becomes {X=a,Y=Z,Y=b}.
Suppose X=a is selected next.
Then S becomes{X/a} and E becomes {Y=Z,Y=b}.
Suppose Y=Z is selected.
Then Y is replaced by Z in S and E.
S becomes{X/a,Y/Z} and E becomes {Z=b}.
Finally Z=b is selected, Z is replaced by b, S becomes {X/a,Y/b,Z/b}, and
E becomes empty.
The substitution {X/a,Y/b,Z/b} is returned as an MGU.
 Unification:

inconsistent. (a substitution y for x written as y/x)

MODULE-2

Resolution in Predicate Logic
• Two literals are contradictory if one can be unified with the negation of the other.

• For example man(x) and man (Himalayas) are contradictory since man(x) and man(Himalayas
) can be unified.

• In predicate logic unification algorithm is used to locate pairs of literals that cancel out.
• It is important that if two instances of the same variable occur, then they must be given identical

substitutions

Prove that Marcus hates ceaser using resolution.

MODULE-2

Example:
John likes all kinds of food.
Apples are food.
Chicken is food.

(a) Convert all the above statements into predicate
logic

(b) Show that John likes peanuts using back chaining
(c) Convert the statements into clause form
(d) Using Resolution show that “John likes peanuts” Anything anyone eats and it is not killed is food.

Bill eats peanuts and is still alive.
Swe eats everything bill eats
Answer:
(a) Predicate Logic:

(b) Backward Chaining Proof:

MODULE-2

(c) Clause Form:

(d) Resolution Proof:

Answering Questions
We can also use the proof procedure to answer questions such as “who tried to assassinate
Caesar” by proving:

– Tryassassinate(y,Caesar).

MODULE-2

– Once the proof is complete we need to find out what was substitution was made for
y.

We show how resolution can be used to answer fill-in-the-blank questions, such as "When did
Marcus die?" or "Who tried to assassinate a ruler?” Answering these questions involves finding a
known statement that matches the terms given in the question and then responding with another
piece of the same statement that fills the slot demanded by the question.
From Clause Form to Horn Clauses
The operation is to convert Clause form to Horn Clauses. This operation is not always possible.
Horn clauses are clauses in normal form that have one or zero positive literals. The conversion
from a clause in normal form with one or zero positive literals to a Horn clause is done by using
the implication property.

Example:

MODULE-2

4. Knowledge Representation Issues

MODULE-2

Introduction:
Knowledge plays an important role in AI systems. The kinds of knowledge might need to be
represented in AI systems:
 Objects: Facts about objects in our world domain. e.g. Guitars have strings, trumpets are brass

instruments.
 Events: Actions that occur in our world. e.g. Steve Vai played the guitar in Frank Zappa's

Band.
 Performance: A behavior like playing the guitar involves knowledge about how to do things.
 Meta-knowledge: Knowledge about what we know. e.g. Bobrow's Robot who plan's a trip. It

knows that it can read street signs along the way to find out where it is.

Representations & Mappings:
In order to solve complex problems in AI we need:

- A large amount of knowledge
- Some mechanisms for manipulating that knowledge to create solutions to new problem.

A variety of ways of representing knowledge have been exploited in AI problems. In this regard we
deal with two different kinds of entities:
 Facts: truths about the real world and these are the things we want to represent.
 Representation of the facts in some chosen formalism. These are the things which we will

actually be able to manipulate.

One way to think of structuring these entities is as two levels:
• Knowledge Level, at which facts are described.
• Symbol Level, at which representations of objects at the knowledge level are defined in terms

of symbols that can be manipulated by programs.

Mappings between Facts and Representations:

The model in the above figure focuses on facts, representations and on the 2-way mappings that
must exist between them. These links are called Representation Mappings.

- Forward Representation mappings maps from Facts to Representations.
- Backward Representation mappings maps from Representations to Facts.

English or natural language is an obvious way of representing and handling facts. Regardless of
representation for facts, we use in program, we need to be concerned with English

MODULE-2

Representation of those facts in order to facilitate getting information into or out of the system.

Mapping functions from English Sentences to Representations: Mathematical logic as representational
formalism.
Example:
 “Spot is a dog”

The fact represented by that English sentence can also be represented in logic as:
dog(Spot)

Suppose that we also have a logical representation of the fact that

Then, using the deductive mechanisms of logic, we may generate the new
representation object: astail(Spot)
Using an appropriate backward mapping function the English sentence “Spot has a
tail” can be generated.

Fact-Representation mapping may not be one-to-one but rather are many-to-many which are a
characteristic of English Representation. Good Representation can make a reasoning program
simple.
Example:
 “All dogs have tails”
 “Every dog has a tail”

From the two statements we can conclude that “Each dog has a tail.” From the
statement 1, we conclude that “Each dog has more than one tail.”

 When we try to convert English sentence into some other represent such as logical propositions, we
first decode what facts the sentences represent and then convert those facts into the new
representations. When an AI program manipulates the internal representation of facts these new
representations should also be interpretable as new representations of facts.

Mutilated Checkerboard Problem:
Problem: In a normal chess board the opposite corner squares have been eliminated. The given
task is to cover all the squares on the remaining board by dominoes so that each domino covers
two squares. No overlapping of dominoes is allowed, can it be done? Consider three data
structures

MODULE-2

The first representation does not directly suggest the answer to the problem. The second may
suggest. The third representation does, when combined with the single additional facts that each
domino must cover exactly one white square and one black square.

The puzzle is impossible to complete. A domino placed on the chessboard will always cover one
white square and one black square. Therefore a collection of dominoes placed on the board will
cover an equal numbers of squares of each color. If the two white corners are removed from the
board then 30 white squares and 32 black squares remain to be covered by dominoes, so this is
impossible. If the two black corners are removed instead, then 32 white squares and 30 black
squares remain, so it is again impossible.

The solution is number of squares must be equal for positive solution.

In the above figure, the dotted line across the top represents the abstract reasoning process that
a program is intended to model. The solid line across the bottom represents the concrete
reasoning process that a particular program performs. This program successfully models the
abstract process to the extent that, when the backward representation mapping is applied to the
program’s output, the appropriate final facts are actually generated.

If no good mapping can be defined for a problem, then no matter how good the program to solve
the problem is, it will not be able to produce answers that correspond to real answers to the
problem.

MODULE-2

Using Knowledge
Let us consider to what applications and how knowledge may be used.
 Learning: acquiring knowledge. This is more than simply adding new facts to a knowledge

base. New data may have to be classified prior to storage for easy retrieval, etc.. Interaction
and inference with existing facts to avoid redundancy and replication in the knowledge and
also so that facts can be updated.

 Retrieval: The representation scheme used can have a critical effect on the efficiency of the
method. Humans are very good at it. Many AI methods have tried to model human.

 Reasoning: Infer facts from existing data.

If a system on only knows:
• Miles Davis is a Jazz Musician.
• All Jazz Musicians can play their instruments well.

If things like Is Miles Davis a Jazz Musician? or Can Jazz Musicians play their instruments well? are
asked then the answer is readily obtained from the data structures and procedures.

However a question like “Can Miles Davis play his instrument well?” requires reasoning. The
above are all related. For example, it is fairly obvious that learning and reasoning involve
retrieval etc.

Approaches to Knowledge Representation
A good Knowledge representation enables fast and accurate access to Knowledge and understanding
of content. The goal of Knowledge Representation (KR) is to facilitate conclusions
from knowledge.

The following properties should be possessed by a knowledge representation system.
• Representational Adequacy: the ability to represent all kinds of knowledge that are

needed in that domain;

• Inferential Adequacy: the ability to manipulate the knowledge represented to produce
new knowledge corresponding to that inferred from the original;

• Inferential Efficiency: the ability to incorporate into the knowledge structure additional
information that can be used to focus the attention of the inference mechanisms in
the most promising directions.

• Acquisitional Efficiency: the ability to acquire new information easily. The simplest
case involves direct insertion, by a person of new knowledge into the database.
Ideally, the program itself would be able to control knowledge acquisition.

No single system that optimizes all of the capabilities for all kinds of knowledge has yet been found.
As a result, multiple techniques for knowledge representation exist.

Knowledge Representation Schemes

MODULE-2

There are four types of Knowledge Representation:
 Relational Knowledge:

– provides a framework to compare two objects based on equivalent attributes
– any instance in which two different objects are compared is a relational type of

knowledge
 Inheritable Knowledge:

– is obtained from associated objects
– it prescribes a structure in which new objects are created which may inherit all or a

subset of attributes from existing objects.
 Inferential Knowledge

– is inferred from objects through relations among objects
– Example: a word alone is simple syntax, but with the help of other words in

phrase the reader may infer more from a word; this inference within linguistic is
called semantics.

 Declarative Knowledge
– a statement in which knowledge is specified, but the use to which that knowledge is to

be put is not given.
– Example: laws, people’s name; there are facts which can stand alone, not dependent

on other knowledge
 Procedural Knowledge

– a representation in which the control information, to use the knowledge is embedded in
the knowledge itself.

– Example: computer programs, directions and recipes; these indicate specific use or
implementation

Simple relational knowledge
The simplest way of storing facts is to use a relational method where each fact about a set of
objects is set out systematically in columns. This representation gives little opportunity for
inference, but it can be used as the knowledge basis for inference engines.

• Simple way to store facts.
• Each fact about a set of objects is set out systematically in columns.
• Little opportunity for inference.
• Knowledge basis for inference engines.

MODULE-2

Given the facts it is not possible to answer simple question such as "Who is the heaviest
player?" but if a procedure for finding heaviest player is provided, then these facts will enable
that procedure to compute an answer. We can ask things like who "bats - left" and "throws -
right".

Inheritable Knowledge
Here the knowledge elements inherit attributes from their parents. The knowledge is embodied in
the design hierarchies found in the functional, physical and process domains. Within the
hierarchy, elements inherit attributes from their parents, but in many cases not all attributes of
the parent elements be prescribed to the child elements.

The inheritance is a powerful form of inference, but not adequate. The basic KR needs to be
augmented with inference mechanism.

The KR in hierarchical structure, shown below, is called “semantic network” or a collection of
“frames” or “slot-and-filler structure”. The structure shows property inheritance and way for
insertion of additional knowledge.

Property inheritance: The objects or elements of specific classes inherit attributes and values from
more general classes. The classes are organized in a generalized hierarchy.

Baseball Knowledge
- isa: show class inclusion
- instance: show class membership

• The directed arrows represent attributes (isa, instance, team) originates at object being described
and terminates at object or its value.

• The box nodes represent objects and values of the attributes.

Viewing a node as a frame
Example: Baseball-player

MODULE-2

 Isa: Adult-Male
 Bats: EQUAL handed
 Height: 6-1
 Batting-average: 0.252

This algorithm is simple. It describes the basic mechanism of inheritance. It does not say what to do
if there is more than one value of the instance or “isa” attribute.

This can be applied to the example of knowledge base, to derive answers to the following queries:
 team (Pee-Wee-Reese) = Brooklyn-Dodger
 batting-average (Three-Finger-Brown) = 0.106
 height (Pee-Wee-Reese) = 6.1
 bats (Three-Finger-Brown) = right

Inferential Knowledge:
This knowledge generates new information from the given information. This new information
does not require further data gathering from source, but does require analysis of the given
information to generate new knowledge. In this, we represent knowledge as formal logic.

Example:
- given a set of relations and values, one may infer other values or relations
- a predicate logic (a mathematical deduction) is used to infer from a set of attributes.
- inference through predicate logic uses a set of logical operations to relate individual data.
- the symbols used for the logic operations are:

MODULE-2

Procedural Knowledge
Procedural knowledge can be represented in programs in many ways. The most common way is
simply as for doing something. The machine uses the knowledge when it executes the code to
perform a task. Procedural Knowledge is the knowledge encoded in some procedures.

Unfortunately, this way of representing procedural knowledge gets low scores with respect to the
properties of inferential adequacy (because it is very difficult to write a program that can reason
about another program’s behavior) and acquisitional efficiency (because the process of updating
and debugging large pieces of code becomes unwieldy).

The most commonly used technique for representing procedural knowledge in AI programs is the
use of production rules.

Production rules, particularly ones that are augmented with information on how they are to be
used, are more procedural than are the other representation methods. But making a clean
distinction between declarative and procedural knowledge is difficult. The important difference is
in how the knowledge is used by the procedures that manipulate it.

Heuristic or Domain Specific knowledge can be represented using Procedural Knowledge.

Issues in Knowledge Representation

MODULE-2

Below are listed issues that should be raised when using knowledge representation techniques:

The attributes are called a variety of things in AI systems, but the names do not matter. What
does matter is that they represent class membership and class inclusion and that class inclusion is
transitive. The predicates are used in Logic Based Systems.

Relationship among Attributes
 The attributes to describe objects are themselves entities that we represent.
 The relationship between the attributes of an object, independent of specific knowledge they

encode, may hold properties like:
Inverses, existence in an isa hierachy, techniques for reasoning about values and
single valued attributes.

MODULE-2

The second way can be realized using semantic net and frame based systems. This Inverses is
used in Knowledge Acquisition Tools.

This also provides information about constraints on the values that the attribute can have and
mechanisms for computing those values.

MODULE-2

Several kinds of information can play a role in this reasoning, including:

 Information about the type of the value.
• Constraints on the value often stated in terms of related entities.
• Rules for computing the value when it is needed. (Example: of such a rule in for bats

attribute). These rules are called backward rules. Such rules have also been called ifneeded
rules.

• Rules that describe actions that should be taken if a value ever becomes known. These rules
are called forward rules, or sometimes if-added rules.

 Introduce an explicit notation for temporal interval. If two different values are ever asserted for

the same temporal interval, signal a contradiction automatically.
 Assume that the only temporal interval that is of interest is now. So if a new value is asserted,

replace the old value.
 Provide no explicit support. Logic-based systems are in this category. But in these systems,

knowledge base builders can add axioms that state that if an attribute has one value then it is
known not to have all other values.

MODULE-2

Choosing the Granularity of Representation Primitives are fundamental concepts such as holding,
seeing, playing and as English is a very rich language with over half a million words it is clear we will
find difficulty in deciding upon which words to choose as our primitives in a series of situations.
Separate levels of understanding require different levels of primitives and these need many rules to
link together similar primitives.

MODULE-2

MODULE-2

6. Representing Knowledge using Rules

Procedural versus Declaration Knowledge

MODULE-2

Declarative Knowledge Procedural Knowledge
Factual information stored in memory and
known to be static in nature.

the knowledge of how to perform, or how to
operate

knowledge of facts or concepts a skill or action that you are capable of
performing

knowledge about that something true or false Knowledge about how to do something to
reach a particular objective or goal

knowledge is specified but how to use to
which that knowledge is to be put is not given

control information i.e., necessary to use the
knowledge is considered to be embedded in
the knowledge itself

E.g.: concepts, facts, propositions, assertions,
semantic nets …

E.g.: procedures, rules, strategies, agendas,
models

It is explicit knowledge (describing) It is tacit knowledge (doing)

The declarative representation is one in which the knowledge is specified but how to use to which that
knowledge is to be put is not given.

• Declarative knowledge answers the question 'What do you know?'
• It is your understanding of things, ideas, or concepts.
• In other words, declarative knowledge can be thought of as the who, what, when, and

where of information.
• Declarative knowledge is normally discussed using nouns, like the names of people,

places, or things or dates that events occurred.

The procedural representation is one in which the control information i.e., necessary to use the
knowledge is considered to be embedded in the knowledge itself.

• Procedural knowledge answers the question 'What can you do?'
• While declarative knowledge is demonstrated using nouns,
• Procedural knowledge relies on action words, or verbs.
• It is a person's ability to carry out actions to complete a task.

The real difference between declarative and procedural views of knowledge lies in which the control
information presides.

Example:

The statements 1, 2 and 3 are procedural knowledge and 4 is a declarative knowledge.

MODULE-2

 Forward & Backward Reasoning
The object of a search procedure is to discover a path through a problem space from an initial
configuration to a goal state. There are actually two directions in which such a search could
proceed:

• Forward Reasoning,
 from the start states
 LHS rule must match with initial state
 Eg: A → B, B→C => A→C

• Backward Reasoning,
 from the goal states
 RHS rules must match with goal state
 Eg: 8-Puzzle Problem

In both the cases, the control strategy is it must cause motion and systematic. The production
system model of the search process provides an easy way of viewing forward and backward
reasoning as symmetric processes.

Consider the problem of solving a particular instance of the 8-puzzle problem. The rules to be
used for solving the puzzle can be written as:

Reasoning Forward from Initial State:
 Begin building a tree of move sequences that might be solved with initial configuration at root

of the tree.
 Generate the next level of the tree by finding all the rules whose left sides match the root

node and using their right sides to create the new configurations.
 Generate the next level by taking each node generated at the previous level and applying to it

all of the rules whose left sides match it.
 Continue until a configuration that matches the goal state is generated.

Reasoning Backward from Goal State:
 Begin building a tree of move sequences that might be solved with goal configuration at root

of the tree.

MODULE-2

 Generate the next level of the tree by finding all the rules whose right sides match the root
node. These are all the rules that, if only we could apply them, would generate the state we
want. Use the left sides of the rules to generate the nodes at this second level of the tree.

 Generate the next level of the tree by taking each node at the previous level and finding all
the rules whose right sides match it. Then use the corresponding left sides to generate the
new nodes.

 Continue until a node that matches the initial state is generated.
 This method of reasoning backward from the desired final state is often called goaldirected

reasoning.

To reason forward, the left sides (preconditions) are matched against the current state and the
right sides (results) are used to generate new nodes until the goal is reached. To reason
backward, the right sides are matched against the current node and the left sides are used to
generate new nodes representing new goal states to be achieved.

The following 4 factors influence whether it is better to reason Forward or Backward:
1. Are there more possible start states or goal states? We would like to move from the

smaller set of states to the larger (and thus easier to find) set of states.
2. In which direction branching factor (i.e, average number of nodes that can be reached

directly from a single node) is greater? We would like to proceed in the direction with
lower branching factor.

3. Will the program be used to justify its reasoning process to a user? If so, it is important to
proceed in the direction that corresponds more closely with the way the user will think.

4. What kind of event is going to trigger a problem-solving episode? If it is arrival of a new
fact, forward reasoning makes sense. If it is a query to which a response is desired,
backward reasoning is more natural.

Backward-Chaining Rule Systems
 Backward-chaining rule systems are good for goal-directed problem solving.
 For example, a query system would probably use backward chaining to reason about and

answer user questions.
 Unification tries to find a set of bindings for variables to equate a (sub) goal with the head of

some rule.
 Medical expert system, diagnostic problems

Forward-Chaining Rule Systems
 Instead of being directed by goals, we sometimes want to be directed by incoming data.
 For example, suppose you sense searing heat near your hand. You are likely to jerk your hand

away.
 Rules that match dump their right-hand side assertions into the state and the process repeats.
 Matching is typically more complex for forward-chaining systems than backward ones.

Synthesis systems – Design/Configuration

MODULE-2

Example of Typical Forward Chaining
Rules

1) If hot and smoky then ADD fire
2) If alarm_beeps then ADD smoky
3) If fire then ADD switchon_sprinkles

Facts
1) alarm_beeps (given)
2) hot (given)
………

(3) smoky (from F1 by R2)
(4) fire (from F2, F4 by R1)
(5) switch_on_sprinklers (from F2 by R3)

Example of Typical Backward Chaining
Goal: Should I switch on sprinklers?

Combining Forward and Backward Reasoning
Sometimes certain aspects of a problem are best handled via forward chaining and other
aspects by backward chaining. Consider a forward-chaining medical diagnosis program. It might
accept twenty or so facts about a patient’s condition then forward chain on those concepts to try
to deduce the nature and/or cause of the disease.
 Now suppose that at some point, the left side of a rule was nearly satisfied – nine out of ten of its
preconditions were met. It might be efficient to apply backward reasoning to satisfy the tenth
precondition in a directed manner, rather than wait for forward chaining to supply the fact by accident.

Whether it is possible to use the same rules for both forward and backward reasoning also
depends on the form of the rules themselves. If both left sides and right sides contain pure
assertions, then forward chaining can match assertions on the left side of a rule and add to the
state description the assertions on the right side. But if arbitrary procedures are allowed as the
right sides of rules then the rules will not be reversible.

Logic Programming
 Logic Programming is a programming language paradigm in which logical assertions are

viewed as programs.
 There are several logic programming systems in use today, the most popular of which is

PROLOG.
 A PROLOG program is described as a series of logical assertions, each of which is a Horn

clause.
 A Horn clause is a clause that has at most one positive literal. Thus p, p q, p q are all

Horn clauses.

MODULE-2

Programs written in pure PROLOG are composed only of Horn Clauses.
Syntactic Difference between the logic and the PROLOG representations, including:

 In logic, variables are explicitly quantified. In PROLOG, quantification is provided implicitly
by the way the variables are interpreted.
o The distinction between variables and constants is made in PROLOG by having all

variables begin with uppercase letters and all constants begin with lowercase
letters.

 In logic, there are explicit symbols for and () and or (). In PROLOG, there is an explicit
symbol for and (,), but there is none for or.

 In logic, implications of the form “p implies q” as written as pq. In PROLOG, the same
implication is written “backward” as q: -p.

Example:

The first two of these differences arise naturally from the fact that PROLOG programs are actually
sets of Horn Clauses that have been transformed as follows:

1. If the Horn Clause contains no negative literals (i.e., it contains a single literal which is
positive), then leave it as it is.

2. Otherwise, return the Horn clause as an implication, combining all of the negative literals
into the antecedent of the implication and leaving the single positive literal (if there is one)
as the consequent.

This procedure causes a clause, which originally consisted of a disjunction of literals (all but one
of which were negative), to be transformed to single implication whose antecedent is a
conjunction of (what are now positive) literals.

MODULE-2

Matching
We described the process of using search to solve problems as the application of appropriate
rules to individual problem states to generate new states to which the rules can then be applied
and so forth until a solution is found.

How we extract from the entire collection of rules those that can be applied at a given point? To
do so requires some kind of matching between the current state and the preconditions of the
rules. How should this be done? The answer to this question can be critical to the success of a
rule based system.

MODULE-2

A more complex matching is required when the preconditions of rule specify required properties
that are not stated explicitly in the description of the current state. In this case, a separate set of
rules must be used to describe how some properties can be inferred from others. An even more
complex matching process is required if rules should be applied and if their pre condition
approximately match the current situation. This is often the case in situations involving physical
descriptions of the world.

Indexing
One way to select applicable rules is to do a simple search though all the rules comparing each
one’s precondition to the current state and extracting all the one’s that match. There are two
problems with this simple solution:

i. The large number of rules will be necessary and scanning through all of them at every step
would be inefficient.

ii. It’s not always obvious whether a rule’s preconditions are satisfied by a particular state.

Solution: Instead of searching through rules use the current state as an index into the rules and
select the matching one’s immediately.

Matching process is easy but at the price of complete lack of generality in the statement of the
rules. Despite some limitations of this approach, Indexing in some form is very important in the
efficient operation of rule based systems.

Matching with Variables
The problem of selecting applicable rules is made more difficult when preconditions are not
stated as exact descriptions of particular situations but rather describe properties that the
situations must have. It often turns out that discovering whether there is a match between a
particular situation and the preconditions of a given rule must itself involve a significant search
process.

Backward-chaining systems usually use depth-first backtracking to select individual rules, but
forward-chaining systems generally employ sophisticated conflict resolution strategies to choose
among the applicable rules.

While it is possible to apply unification repeatedly over the cross product of preconditions and state
description elements, it is more efficient to consider the many-many match problem, in which many

MODULE-2

rules are matched against many elements in the state description simultaneously. One efficient
many-many match algorithm is RETE.

RETE Matching Algorithm
The matching consists of 3 parts

1. Rules & Productions
2. Working Memory
3. Inference Engine

The inference Engine is a cycle of production system which is match, select, execute.

INFERENCE ENGINE
The above cycle is repeated until no rules are put in the conflict set or until stopping condition is
reached. In order to verify several conditions, it is a time consuming process. To eliminate the
need to perform thousands of matches of cycles on effective matching algorithm is called RETE.

The Algorithm consists of two Steps.
1. Working memory changes need to be examined.
2. Grouping rules which share the same condition & linking them to their common terms.

RETE Algorithm is many-match algorithm (In which many rules are matched against many
elements). RETE uses forward chaining systems which generally employee sophisticated conflict
resolution strategies to choose among applicable rules. RETE gains efficiency from 3 major
sources.

1. RETE maintains a network of rule condition and it uses changes in the state
description to determine which new rules might apply. Full matching is only
pursued for candidates that could be affected by incoming/outgoing data.

2. Structural Similarity in rules: RETE stores the rules so that they share structures
in memory, set of conditions that appear in several rules are matched once for
cycle.

3. Persistence of variable binding consistency. While all the individual preconditions
of the rule might be met, there may be variable binding conflicts that prevent the
rule from firing.

MODULE-2

can be minimized. RETE remembers its previous calculations and is able to merge
new binding information efficiently.

Approximate Matching:
Rules should be applied if their preconditions approximately match to the current situation
Eg: Speech understanding program

Rules: A description of a physical waveform to phones
Physical Signal: difference in the way individuals speak, result of background noise.

Conflict Resolution:
When several rules matched at once such a situation is called conflict resolution. There are 3
approaches to the problem of conflict resolution in production system.

1. Preference based on rule match:
a. Physical order of rules in which they are presented to the system
b. Priority is given to rules in the order in which they appear

2. Preference based on the objects match:
a. Considers importance of objects that are matched
b. Considers the position of the match able objects in terms of Long Term Memory

(LTM) & Short Term Memory(STM)
LTM: Stores a set of rules
STM (Working Memory): Serves as storage area for the facts deduced by rules in long
term memory

3. Preference based on the Action:
a. One way to do is find all the rules temporarily and examine the results of each. Using a

Heuristic Function that can evaluate each of the resulting states compare the merits of
the result and then select the preferred one.

Search Control Knowledge:
 It is knowledge about which paths are most likely to lead quickly to a goal state
 Search Control Knowledge requires Meta Knowledge.
 It can take many forms. Knowledge about

which states are more preferable to
others.
which rule to apply in a given situation
the Order in which to pursue sub goals
useful Sequences of rules to apply.

MODULE-2

